Regularidades no lineales en índices accionarios. Una aproximación con redes neuronales

Contenido principal del artículo

Christian A. Johnson
Miguel A. Padilla

Resumen

Las redes neuronales artificiales (RNA) se han convertido en un importante instrumento para modelar y predecir los rendimientos accionarios. Debido a que son modelos que incorporan variables no lineales (característica de la mayoría de las series económicas y financieras) funcionan mejor que los modelos estadísticos tradicionales, como las regresiones lineales o modelos Box-Jenkins. Este estudio intenta encontrar regularidades en los índices accionarios de 27 países mediante un acercamiento de redes neuronales artificiales y su contraste con modelos lineales rezagados, y aporta evidencia a la discusión actual respecto a la teoría de los mercados eficientes. Asimismo se realizan predicciones extramuestrales dinámicas sustentadas también con una prueba no paramétrica, que confirma excelentes resultados de las redes neuronales en contraste con los modelos autorregresivos tradicionales.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Johnson, C. A., & Padilla, M. A. (2017). Regularidades no lineales en índices accionarios. Una aproximación con redes neuronales. El Trimestre Económico, 72(288), 765–821. https://doi.org/10.20430/ete.v72i288.561
Sección
Artículos

Métricas PlumX

Citas

Aaltonen, J., y R. Östermark (1993), “Financial Risk Classification of Finnish Listed Companies by Accounting Data”, 16th Congress of the European Accounting Association, abril, Turku, Finlandia.

Altman, E. I., G. Marco y F. Varetto (1994), “Corporate Distress Diagnosis: Comparisons using Linear Discriminant Analysis and Neural Networks (the Italian Experience)”, Journal of Banking and Finance, vol. 18, pp. 505-529.

Bach, M., y E. Hansen (2002), “Estimación de redes neuronales con datos ultra frecuentes: Aplicación al mercado accionario chileno”, Universidad de Chile.

Box, G. E. P., y G. M. Jenkins (1970), Time Series Analysis, Forecasting and Control, San Francisco, Holden-Day.

Brooks, C. (1996), “Testing for Non-linearity in Daily Sterling Exchange Rates”, Applied Financial Economics, 6, pp. 307-317.

Campbell, J. Y., A. W. Lo, y A. C. MacKinlay (1997), The Econometrics of Financial Markets, Princeton, Princeton University Press.

Casdagli, M. (1989), “Nonlinear Prediction of Chaotic Time Series”, Physica D, 35, pp. 335-356.

El-Shazly, S., y H. El-Shazly (1999), “Forecasting Currency Prices Using a Genetically Evolved Neural Network Architecture”, International Review of Financial Analysis 8 (1), pp. 67-82.

Evans, O. V. D. (1997), “Short-Term Currency Forecasting Using Neural Networks”, ICL Systems Journal 11(2).

Fairclough, D. y J. Hunter (1998), Ex-ante Classification Of Takeover Targets Using Neural Networks, Decision Technologies For Computational Finance, Kluwer Academic Press.

Fama, E. (1970), “Efficient Capital Markets: A Review of Theory and Empirical Work”, Journal of Finance.

Franses P. H. y D. van Dijk (2000), Non-linear Time Series Models in Empirical Finance, Cambridge University Press.

--, y K. van Griensven (1997), “Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules”, Studies in Nonlinear Dynamics & Econometrics, vol. 2, cuarta edición 4, Berkeley Electronic Press.

Freeman, J. A. (1994), Simulating Neural Networks with Mathematics, Addison-Wesley Publishing Company.

Fu, J., (1998), “A Neural Network Forecast of Economic Growth and Recession”, Journal of Economics 24(1), pp. 51-66.

Gately, E. (1996). Neural Network for Financial Forecasting, Nueva York, John Wiley and Sons.

Granger, C. W. J., y T. Terasvirta (1993), Modelling Nonlinear Economic Relationships, Advanced Texts in Econometrics, Oxford University Press.

Greigoire, J., y S. Zurita (1993), “Información y mercados de capitales”, Estudios de Economía, vol 20, núm. 2, diciembre.

Herbrich, R., M. Keilbach, T. Graepel, P. BollmRNA y K. Obermayer (1999), “Neural Networks in Economics: Background, Applications and New Developments”, Technische Universitat Berlin.

Hopfield, J. (1982), “Neural Networks & Physical Systems with Emergent Colective Computational Abilities”, Proccedings of the National Academy of Sciences 79, pp. 2554-2558.

Hornik, K., M. Stinchcombe y H. White (1990), “Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks”, Neural Networks, vol 3, pp. 551-560.

Hutchinson, J., A. Lo y T. Poggio (1994), “A Nonparametric Approach to Pricing and Hedging Derivate securities Via Learning Networks”, The Journal of Finance, vol. 49, núm. 3, julio.

Johnson, C., y F. Soriano (2004), “Volatilidad del mercado accionario y la crisis asiática”, EL TRIMESTRE ECONÓMICO, vol. LXXI, núm. 282, pp. 355-388.

--, y R. Vergara (2004), “Monetary Policy in Chile: A Neural Network Approach”, Escuela de Negocios Universidad Adolfo Ibáñez y Departamento de Economía, Universidad Católica de Chile, inédito.

Kasabov, N. (1996), Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, Cambridge, MIT Press.

Keim, D., y R. Stambaugh (1986), “Predicting Returns in the Stock and Bond Markets”, Journal of Financial Economics 17, pp. 357-390.

Kohonen, T. (2001), “Self-Organizin Maps”, Springer Series in Information Sciences, vol. 30, Berlín-Nueva York, Springer y Heidelberg.

Kuan, C., y H. White (1994), “Artificial Neural Networks: An Econometric Perspective”, Econometric Reviews 13, pp. 1-91.

LeBaron, B. (1993), “Forecast Improvements Using a Volatility Index”, M. H. Pesaran y S. M. Potter (comps.), Nonlinear Dynamics, Chaos and Econometrics, John Wiley & Sons, pp.129-142.

Lim, G., y P. McNelis (1998), “The Effect of the Nikkei and the S&P on the All-Ordinaries: A Comparison of Three Models”, International Journal of Finance and Economics 3 (3), pp. 217-228.

Lo, A. W. (1994), “Neural Networks and other Nonparametric Techniques in Economics and Finance”, Blending Quantitative and traditional Equity Analysis, Association for Investment Management and Research.

--, y A. C. MacKinlay (1987), “Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test”, Working Paper 5 -87, Rodney L. White Center, Wharton School, University of Pennsylvania.

Martin, V., E. Choo, L. Teo (1997), “Exchange Rate Forecasting Models”, J. Creedy y V. Martin (comps.), Nonlinear Economic Models: Cross-Sectional, Time Series and Neural Network Applications, Cheltenham y Lyme, N. H., Elgar.

McNelis, P. D. (1996) “A Neural Networks Analysis of Brazilian Stock Prices: tequila effect vs. Pisco Sour Effects”, Journal of Emerging Markets, vol. 1, núm. 2.

Moshiri, S., N. Cameron, D. Scuse (1999), “Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation”, Computational Economics 14 (3), pp. 219-235.

Olmedo, I., E. Fernandez (1997), “Hybrid Classifiers for Financial Multicriteria Decision-Making: The Case of Bankruptcy Prediction”, Computational Economics 10 (4), pp. 317-335.

Parisi, A., F. Parisi y J. L. Guerrero (2003), “Modelos predictivos de redes neuronales en índices bursátiles”, EL TRIMESTRE ECONÓMICO, vol LXX, núm. 280, pp. 721-744.

Pesaran, M. Hashem, y Allan Timmermann (1992), “A Simple Nonparametric Test of Predictive Performance”, Journal of Business and Economic Statistics, vol. 10(4), pp. 561-565.

Qi, M. (1999), “Nonlinear Predictability of Stock Returns Using Financial and Economic Variables”, Journal of Business and Economic Statistics 17 (4), pp. 419-429.

Sargent, T. (1993), Bounded Rationality in Macroeconomics, Oxford University Press.

Shah, J., y M. Murtaza (2000), “A Neural Network Based Clustering Procedure for BankruptcyPrediction”, American Business Review, 18(2), pp. 80-86.

Shahmurove, Y., y D. Witkowska (2000), “Utilizing Artificial Neural Network Model to Predict Stock Markets”, Pennsylvania-Institute for Economic Research 00-11, Pennsylvania-Department of Economics.

Serrano Cinca, C., y J. L. Gallizo Larraz (1996), “Aplicaciones de las Redes Neuronales en Contabilidad y Finanzas”, Biblioteca Electrónica de Contabilidad, vol. 1, núm. 4.

Singleton, J. C., y A. J. Surkan (1995), “Bond Rating with Neural Networks”, A. P. Refenes (comp.), Neural Networks in the Capital Markets, Nueva York, Wiley.

Soofi A. S., y L. Cao (1999), “Nonlinear Deterministic Forecasting of Daily Peseta-Dollar Exchange Rate”, Economic Letters 62, pp. 175-178.

Soto, R. (1995), “Non-Linearities in the Demand for Money: A Neural Network Approach”, Georgetown University, inédito.

Stock, J., y M. Watson (1999), “A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series”, R. Engle y H. White (comps), Cointegration, causality and forecasting: A festschrift in honor of Clive.

Swales, G. S., y Y. Young, (1992), “Applying Artificial Neural Networks to Investment Analysis”, Financial Analysts Journal, septiembre-octubre.

Tan, N. W., y H. Dihardjo (2001), “A Study on Using Artificial Neural Networks to Develop an Early Warning Predictor for Credit Union Financial Distress with Comparison to the Probit Model”, Managerial Finance, 27, núm. 4, pp. 56-77.

Tkacz, G., y S. Hu (1999), “Forecasting GDP Growth Using Artificial Neural Networks”, Working Paper 99-3, Bank of Canada.

Trippi, R. R., y E. Turban (1992), Neural Networks in Finance and Investing, Trippi y Turban. Probus Publishing Company, Chicago.

White, H. (1988), “Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns”, Proceedings of the IEEE International Conference on Neural Networks, San Diego, 2, pp. 451-458.

--, (1992), Artificial Neural Networks: Approximation and Learning Theory, With A. R. Gallant, Blackwell, Cambridge and Oxford.

Wilson, N., K. Chong y J. Peel (1995), “Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings”, International Journal of the Economics of Business, vol. 2, núm. 1, pp. 31-50.

Witkowska, D. (1999), “Applying Artificial Neural Networks to Bank Decision Simulations”, International Advances in Economic Research 5 (3), pp. 350-368.

Wu, C., y X. Wang (2000), “A Neural Network Approach for Analyzing Small Business Lending Decisions”, Review of Quantitative Finance and Accounting 15 (3), pp. 259-276.

Yao, J., C. Tan, H. Poh (1999), “Neural Networks for Technical Analysis: A Study on KLCI”, International Journal of Theoretical and Applied Finance 2 (2), pp. 221-241.

Yoda, M. (1994), “Predicting the Tokyo Stock Market”, G. J. Deboeck (comp.), Trading on the Edge: Neural, Genetic, and the Fuzzy Systems for Chaotic Financial Markets, Nueva York, Wiley.

Yoon, Y., y G. Swales (1991), “Predicting Stock Price Performance,” Proceeding of the 24th Hawaii International Conference on System Sciences, 4, pp. 156-162.

Zekić, M. (1998): “Neural Networks Application in Stock Market Predictions – A Methodology Analysis”, Proceedings of the ninth International Conference on Information and Intelligent Systems ‘98, B. Aurer, R. Logožar, Varaždin, 1998, pp. 255-263.

Zhang, G., y M. Y. Hu (1998), “Neural Network Forecasting of the British Pound/US Dollar Exchange Rate. Omega”, International Journal of Management Science 26, 4, pp. 495-506.

Zurada, J. (1998), “Neural Networks versus Logit Regression Models for Predicting Financial Distress Response Variables”, Journal of Applied Business Research 15 (1), pp. 21-29.